0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Intelligent Prediction of the Frost Resistance of High-performance Concrete: a Machine Learning Method

Autor(en):





Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Journal of Civil Engineering and Management, , n. 6, v. 29
Seite(n): 516-529
DOI: 10.3846/jcem.2023.19226
Abstrakt:

Frost resistance in very cold areas is an important engineering issue for the durability of concrete, and the efficient and accurate prediction of the frost resistance of concrete is a crucial basis for determining reasonable design mix proportions. For a quick and accurate prediction of the frost resistance of concrete, a Bayesian optimization (BO)-random forest (RF) approach was used to establish a frost resistance prediction model that consists of three phases. A case study of a key national engineering project results show that (1) the RF can be used to effectively screen the factors that influence concrete frost resistance. (2) R2 of BO-RF for the training set and the test set are 0.967 and 0.959, respectively, which are better than those of the other algorithms. (3) Using the test data from the first section of the project for prediction, good results are obtained for the second section. The proposed BO-RF hybrid algorithm can accurately and quickly predict the frost resistance of concrete, and provide a reference basis for intelligent prediction of concrete durability.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.3846/jcem.2023.19226.
  • Über diese
    Datenseite
  • Reference-ID
    10737796
  • Veröffentlicht am:
    03.09.2023
  • Geändert am:
    03.09.2023
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine