Intelligent Checking Method for Construction Schemes via Fusion of Knowledge Graph and Large Language Models
Autor(en): |
Hao Li
Rongzheng Yang Shuangshuang Xu Yao Xiao Hongyu Zhao |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 23 Juli 2024, n. 8, v. 14 |
Seite(n): | 2502 |
DOI: | 10.3390/buildings14082502 |
Abstrakt: |
In the construction industry, the professional evaluation of construction schemes represents a crucial link in ensuring the safety, quality and economic efficiency of the construction process. However, due to the large number and diversity of construction schemes, traditional expert review methods are limited in terms of timeliness and comprehensiveness. This leads to an increasingly urgent requirement for intelligent check of construction schemes. This paper proposes an intelligent compliance checking method for construction schemes that integrates knowledge graphs and large language model (LLM). Firstly, a method for constructing a multi-dimensional, multi-granular knowledge graph for construction standards is introduced, which serves as the foundation for domain-specific knowledge support to the LLM. Subsequently, a parsing module based on text classification and entity extraction models is proposed to automatically parse construction schemes and construct pathways for querying the knowledge graph of construction standards. Finally, an LLM is leveraged to achieve an intelligent compliance check. The experimental results demonstrate that the proposed method can effectively integrate domain knowledge to guide the LLM in checking construction schemes, with an accuracy rate of up to 72%. Concurrently, the well-designed prompt template and the comprehensiveness of the knowledge graph facilitate the stimulation of the LLM’s reasoning ability. This work contributes to exploring the application of LLMs and knowledge graphs in the vertical domain of text compliance checking. Future work will focus on optimizing the integration of LLMs and domain knowledge to further improve the accuracy and practicality of the intelligent checking system. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
2.12 MB
- Über diese
Datenseite - Reference-ID
10795269 - Veröffentlicht am:
01.09.2024 - Geändert am:
01.09.2024