Integrating Image Processing and Machine Learning for the Non-Destructive Assessment of RC Beams Damage
Autor(en): |
Hosein Naderpour
Mohammad Abbasi Denise-Penelope N. Kontoni Masoomeh Mirrashid Nima Ezami Ambrosios-Antonios Savvides |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 31 Dezember 2023, n. 1, v. 14 |
Seite(n): | 214 |
DOI: | 10.3390/buildings14010214 |
Abstrakt: |
Non-destructive testing (NDT) is a crucial method for detecting damages in concrete structures. Structural damage can lead to functional changes, necessitating a range of damage detection techniques. Non-destructive methods enable the pinpointing of the location of the damage without causing harm to the structure, thus saving both time and money. Damaged structures exhibit alterations in their static and dynamic properties, primarily stemming from a reduction in stiffness. Monitoring these changes allows for the determination of the failure location and severity, facilitating timely repairs and reinforcement before further deterioration occurs. A systematic approach to damage detection and assessment is pivotal for fortifying structures and preventing structural collapse, which can result in both financial and human losses. In this study, we employ image processing to categorize damaged beams based on their crack growth and propagation patterns. We also utilize support vector machine (SVM) and k-nearest neighbor (KNN) methods to detect the type, location, and extent of failures in reinforced concrete beams. To provide context and relevance for the laboratory specimens, we will compare our findings to the results from controlled experiments in a controlled laboratory setting. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
11.65 MB
- Über diese
Datenseite - Reference-ID
10760304 - Veröffentlicht am:
23.03.2024 - Geändert am:
25.04.2024