An integrated underwater structural multi-defects automatic identification and quantification framework for hydraulic tunnel via machine vision and deep learning
Autor(en): |
Yangtao Li
(State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China)
Tengfei Bao (State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China) Xianjun Huang (State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China) Ruijie Wang (State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China) Xiaosong Shu (State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China) Bo Xu (College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, China) Jiuzhou Tu (State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China) Yuhang Zhou (State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China) Kang Zhang (State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China) |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Structural Health Monitoring, Dezember 2022, n. 4, v. 22 |
Seite(n): | 147592172211223 |
DOI: | 10.1177/14759217221122316 |
- Über diese
Datenseite - Reference-ID
10702213 - Veröffentlicht am:
16.12.2022 - Geändert am:
21.06.2023