0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Information system of multi-stage analysis of the building of object models on a construction site

Autor(en):




Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: IOP Conference Series: Earth and Environmental Science, , n. 1, v. 1254
Seite(n): 012075
DOI: 10.1088/1755-1315/1254/1/012075
Abstrakt:

This study focuses on the development of a multi-stage analysis of building object models (BOM) on a construction site for modeling an “evolutionary” digital twin, by integrating building information modeling (BIM) technology and an artificial intelligence system. The concepts of photo modeling of the construction site using a group of moving cameras were outlined, as well as the possibility of integrating IoT technologies. The dynamic transition of real building structures into intermediate BIM representations of digital twins was investigated, with the prospect of enabling augmented reality technology. An artificial intelligence system combining Convolutional Neural Network (CNN) and Feed Forward Neural Network (FFNN) architectures has been developed as a comprehensive mechanism for the detection, categorization, and evaluation of BIM projects at all stages of their life cycle. The paper addresses the scaling prospects for the development of point cloud and mesh models, as well as the use of big data technology while optimizing the representation of the “evolutionary” BIM project of the digital twin of the construction site. The effectiveness of site conformance detection during the step-by-step construction of a BIM model, which shows consistency and provides a quantitative assessment of the processes occurring on the site, has been determined. The results of this research can be used to improve BIM modeling methods and concepts, in particular towards a multi-stage “evolutionary” representation of the digital twin of the construction site.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1088/1755-1315/1254/1/012075.
  • Über diese
    Datenseite
  • Reference-ID
    10780255
  • Veröffentlicht am:
    12.05.2024
  • Geändert am:
    12.05.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine