0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Autor(en):


Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Advances in Civil Engineering, , v. 2020
Seite(n): 1-16
DOI: 10.1155/2020/8894109
Abstrakt:

An accurate slope prediction model is important for slope reinforcement before the disaster. Thek-nearest neighbor (KNN) algorithm, as a simple and effective nonparametric machine learning method, is widely applied in classification recognition. In our study, thek-nearest neighbor (KNN) algorithm is improved to reduce its sample dependence and improve the robustness of the algorithm, and then the prediction model of the slope stability is proposed based on the improvedk-nearest neighbor (KNN) algorithm. Extensive experimental results show that our proposed prediction model achieves high prediction performance in this regard. Moreover, a comparison between our proposed prediction model and the finite element method, which is the classical theoretical method of slope stability, was made, which will provide an important approach to predicting the slope stability for slope engineering. Finally, shaking table test of a slope model is conducted to evaluate whether the slope is stable or not, and the experimental results are in good agreement with the prediction results of our proposed prediction model, which further demonstrates its effectiveness.

Copyright: © 2020 Shuai Huang et al.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10427969
  • Veröffentlicht am:
    30.07.2020
  • Geändert am:
    02.06.2021
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine