Impact of Mixing Methods and Cement Dosage on Unconfined Compressive Strength of Cement-Stabilized Macadam
Autor(en): |
Kaiyin Zhao
Lijun Zhao Jinru Hou Zhongxu Feng Wenzhi Jiang |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | International Journal of Concrete Structures and Materials, Dezember 2022, n. 1, v. 16 |
DOI: | 10.1186/s40069-022-00505-z |
Abstrakt: |
The technology of vibratory mixing has been applied to improve the compressive strength of cement-stabilized macadam (CSM). The aim of this study is to investigate the effect of vibration acceleration and cement dosage on the unconfined compressive strength and density of CSM. The mixtures with four cement dosages (2%, 3%, 4%, and 5%) were prepared by conventional mixing (0 g) and vibratory mixing (1 g, 2 g, and 3.5 g). The unconfined compressive strength was tested under different mixing methods. And the microstructure of CSM was analyzed by scanning electron microscope. The results indicate that samples using vibratory mixing have higher strengths, lower coefficient of variation, and denser microstructures, compared with the conventional compulsory mixing. Compared with 15% in conventional mixing, the strength variable coefficient of CSM is less than 10% in the vibratory mixing method. As the cement dosage and the vibration acceleration increase, the unconfined compressive strength increases. However, cement dosage has a more significant influence on improving the unconfined compressive strength than the mixing method. With the increase of every 1% in cement dosage, the 7-day strength of conventional mixing and in vibratory mixing average increased by 59% and 38%, respectively. However, the maximum improvement rate of the UCS value is 20–56.7% when vibration acceleration increased from 0 to 1 g. Especially when cement dosage is high, the effect of vibratory mixing on improving strength is limited. Besides, vibratory mixing reduces the original cement dosage by over 1.6% with the qualified unconfined compressive strength at vibration acceleration of 2 g, which is recommended in construction practice. |
- Über diese
Datenseite - Reference-ID
10746212 - Veröffentlicht am:
04.12.2023 - Geändert am:
04.12.2023