0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Autor(en): (Department of Civil Engineering, College of Engineering & Mine, University of North Dakota, 243 Centenial Drive Stop 8115, Grand Forks, ND 58202-8115, USA)
ORCID (Department of Civil Engineering, College of Engineering & Mine, University of North Dakota, 243 Centenial Drive Stop 8115, Grand Forks, ND 58202-8115, USA)
ORCID (Department of Civil Engineering, College of Engineering & Mine, University of North Dakota, 243 Centenial Drive Stop 8115, Grand Forks, ND 58202-8115, USA)
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Infrastructures, , n. 4, v. 8
Seite(n): 66
DOI: 10.3390/infrastructures8040066
Abstrakt:

Ancillary structures are essential for highways’ safe operationality but are mainly prone to environmental corrosion. The traditional way of inspecting ancillary structures is manned inspection, which is laborious, time-consuming, and unsafe for inspectors. In this paper, a novel image processing technique was developed for autonomous corrosion detection of in-service ancillary structures. The authors successfully leveraged corrosion features in the YCbCr color space as an alternative to the conventional red–green–blue (RGB) color space. The proposed method included a preprocessing operation including contrast adjustment, histogram equalization, adaptive histogram equalization, and optimum value determination of brightness. The effect of preprocessing was evaluated against a semantically segmented ground truth as a set of pixel-level annotated images. The false detection rate was higher in Otsu than in the global threshold method; therefore, the preprocessed images were converted to binary using the global threshold value. Finally, an average accuracy and true positive rate of 90% and 70%, respectively, were achieved for corrosion prediction in the YCbCr color space.

Copyright: © 2023 the Authors. Licensee MDPI, Basel, Switzerland.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10722705
  • Veröffentlicht am:
    22.04.2023
  • Geändert am:
    10.05.2023
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine