^ Heating, Ventilation, and Air Conditioning (HVAC) Noise Detection in Open-Plan Offices Using Recursive Partitioning | Structurae
0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Heating, Ventilation, and Air Conditioning (HVAC) Noise Detection in Open-Plan Offices Using Recursive Partitioning

Autor(en):


Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Buildings, , n. 12, v. 8
Seite(n): 169
DOI: 10.3390/buildings8120169
Abstrakt:

Open-plan offices have lower construction costs, allowing for significant savings in space and, according to designers, facilitate communication between workers, thus, improving collaboration, as well as the exchange of ideas. For these reasons, this type of office has become widespread, while highlighting numerous limitations and various problems. These include the control of anthropic and electromechanical noise. In this study, measurements of the noise emitted by a heating, ventilation, and air conditioning (HVAC) system were carried out in an open-plan office. The average spectral levels in a 1/3 octave band were compared through correlation analysis, to identify any redundant data. A model was then adapted to evaluate the importance of the variables, in order to classify the characteristics, by importance. To reduce the number of predictor variables, a selection analysis of the characteristics was carried out. A subset of predictors was extracted to be used to produce an accurate prediction model. Finally, a model based on recursive partitioning, to detect the operating conditions of an HVAC system, was developed and applied, so as to provide insights into the development and application of this technique, in these contexts. The high accuracy of the model (Accuracy = 0.9981) suggests the adoption of this tool for several applications.

Copyright: © 2018 by the authors; licensee MDPI, Basel, Switzerland.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10324847
  • Veröffentlicht am:
    22.07.2019
  • Geändert am:
    02.06.2021