0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Guided-wave signal processing by the sparse Bayesian learning approach employing Gabor pulse model

Autor(en):




Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Structural Health Monitoring, , n. 3, v. 16
Seite(n): 347-362
DOI: 10.1177/1475921716665252
Abstrakt:

Guided waves have been used for structural health monitoring to detect damage or defects in structures. However, guided wave signals often involve multiple modes and noise. Extracting meaningful damage information from the received guided wave signal becomes very challenging, especially when some of the modes overlap. The aim of this study is to develop an effective way to deal with noisy guided-wave signals for damage detection as well as for de-noising. To achieve this goal, a robust sparse Bayesian learning algorithm is adopted. One of the many merits of this technique is its good performance against noise. First, a Gabor dictionary is designed based on the information of the noisy signal. Each atom of this dictionary is a modulated Gaussian pulse. Then the robust sparse Bayesian learning technique is used to efficiently decompose the guided wave signal. After signal decomposition, a two-step matching scheme is proposed to extract meaningful waveforms for damage detection and localization. Results from numerical simulations and experiments on isotropic aluminum plate structures are presented to verify the effectiveness of the proposed approach in mode identification and signal de-noising for damage detection.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1177/1475921716665252.
  • Über diese
    Datenseite
  • Reference-ID
    10561992
  • Veröffentlicht am:
    11.02.2021
  • Geändert am:
    19.02.2021
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine