Generating Interior Design from Text: A New Diffusion Model-Based Method for Efficient Creative Design
Autor(en): |
Junming Chen
Zichun Shao Bin Hu |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 28 Juni 2023, n. 7, v. 13 |
Seite(n): | 1861 |
DOI: | 10.3390/buildings13071861 |
Abstrakt: |
Because interior design is subject to inefficiency, more creativity is imperative. Due to the development of artificial intelligence diffusion models, the utilization of text descriptions for the generation of creative designs has become a novel method for solving the aforementioned problem. Herein, we build a unique interior decoration style dataset. Thus, we solve the problem pertaining to the need for datasets, propose a new loss function that considers the decoration style, and retrain the diffusion model using this dataset. The trained model learns interior design knowledge and can generate an interior design through text. The proposed method replaces the designer’s drawing with computer-generated creative design, thereby enhancing the design efficiency and creative generation. Specifically, the proposed diffusion model can generate interior design images of specific decoration styles and spatial functions end to end from text descriptions, and the generated designs are easy to modify. This novel and creative design method can efficiently generate various interior designs, promote the generation of creative designs, and enhance the design and decision-making efficiency. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
63.79 MB
- Über diese
Datenseite - Reference-ID
10737539 - Veröffentlicht am:
03.09.2023 - Geändert am:
14.09.2023