A general framework for supervised structural health monitoring and sensor output validation mitigating data imbalance with generative adversarial networks-generated high-dimensional features
Autor(en): |
Mohammad Hesam Soleimani-Babakamali
(Department of Civil and Environmental Engineering, Virginia Tech University, Blacksburg, VA, USA)
Roksana Soleimani-Babakamali (Department of Computer Science, University of Vienna, Vienna, Austria) Rodrigo Sarlo (Department of Civil and Environmental Engineering, Virginia Tech University, Blacksburg, VA, USA) |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Structural Health Monitoring, August 2021, n. 3, v. 21 |
Seite(n): | 147592172110254 |
DOI: | 10.1177/14759217211025488 |
- Über diese
Datenseite - Reference-ID
10627261 - Veröffentlicht am:
05.09.2021 - Geändert am:
09.05.2022