From Trees to Skyscrapers: Holistic Review of the Advances and Limitations of Multi-Storey Timber Buildings
Autor(en): |
Marcelo González-Retamal
Eric Forcael Gerardo Saelzer-Fuica Mauricio Vargas-Mosqueda |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 31 Juli 2022, n. 8, v. 12 |
Seite(n): | 1263 |
DOI: | 10.3390/buildings12081263 |
Abstrakt: |
Products derived from trees have been used by mankind for thousands of years, where timber has a long tradition as an ecological construction material. There is currently an increasing trend in multi-storey timber buildings, because of the projected growth in the demand for housing in urban areas between now and 2050, along with the urgent need for a more sustainable and productive construction industry. The construction of these buildings is now possible thanks to the new advances in architecture, engineering, and construction (AEC) and the new technological developments around timber construction. Its industrialization requirements imply a paradigm shift for the construction industry, which requires, among other aspects, the early and collaborative integration of stakeholders in its design and construction process. According to this, the objective of this review article is to determine the main advances and limitations related to the design and construction of multi-storey timber buildings, categorizing them in aspects such as sustainability, engineering and construction sciences, and collaborative design. The methodology of this article was based on the review of 266 articles published in Web of Science (WoS), as indexed scientific journals, between 2017 and mid-2022, performing a comparative and cooccurrence analysis of the contents. The results evidenced that 73% of the articles showed advances and limitations corresponding to the engineering and construction sciences category, 23% to sustainability, and the remaining 4% to collaborative design. The main advances in the development of multi-storey timber buildings are related to seismic analysis, connections design, fire performance, and fire design. While the main limitations are related to social sustainability, the results are not conclusive due to the low number of publications that support them. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
5.64 MB
- Über diese
Datenseite - Reference-ID
10692608 - Veröffentlicht am:
23.09.2022 - Geändert am:
10.11.2022