A Framework for Prefabricated Component Hoisting Management Systems Based on Digital Twin Technology
Autor(en): |
Yuhong Zhao
Cunfa Cao Zhansheng Liu |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 8 März 2022, n. 3, v. 12 |
Seite(n): | 276 |
DOI: | 10.3390/buildings12030276 |
Abstrakt: |
The hoisting of prefabricated components (PCs) is a key step during the construction of prefabricated buildings. Aiming at the problems existing in the control of PC hoisting, an innovative hoisting management system framework based on the digital twin (DT) is established in this paper. The system framework comprehensively utilizes the building information model (BIM) and Internet of Things (IoT) to establish a digital twin model (DTm) for PC hoisting control and uses Dijkstra’s algorithm to conduct hoisting route planning according to the BIM data in the model. Meanwhile, long-range radio (LoRa) technology was used for data acquisition and transmission to monitor the movement state of the PCs in the hoisting process. By testing it in a prefabricated building project, the DT control method was conducted to realize the functions of real-time information collection, hoisting path planning and PC positioning, which proved the feasibility and effectiveness of the method. As a key technology to realize intelligent manufacturing, DT has been widely studied in academia. The DTm of the hoisting process of PCs is established in this study; it improves the level of intelligent management of prefabricated building construction and provides a new idea for intelligent building construction. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
7.96 MB
- Über diese
Datenseite - Reference-ID
10661160 - Veröffentlicht am:
23.03.2022 - Geändert am:
01.06.2022