0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Forecasting of Wind Induced Pressure on Setback Building Using Artificial Neural Network

Autor(en):

Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Periodica Polytechnica Civil Engineering
DOI: 10.3311/ppci.15769
Abstrakt:

The wind load on an irregular plan shape tall building is quite different compared to a conventional plan shape tall building. Especially the aerodynamic parameters have extreme change due to the variety of setbacks at one or more the disparity of level. This paper highlights the prediction of pressure coefficient on square, single (20 %) setback and double (10 %) setback buildings for any wind incidence angle by CFD simulation and validated with Artificial Neural Network (ANN) and fast Fourier transform. The ANN is a widely used and efficient tool for different types of analyses. The 0° to 180° wind incidence angles (WIAs) considered as input data and respective face wise pressure coefficient (Cp) used as target data. The Levenberg-Marquardt training function and Mean Square Error (MSE) performance function used to train the target data. The face wise graphs of CFD, ANN and FFT are plotted in a single graph and the Cp of the surface checked by any random WIAs. Amazingly, the Cp of random WIA by ANN is almost similar to CFD. Furthermore, the error of ANN is 0.6 % to 2.5 %, which is negligible. According to this predicted graph, the design Cp of any WIA can be easily calculated and implement directly in the design.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.3311/ppci.15769.
  • Über diese
    Datenseite
  • Reference-ID
    10536355
  • Veröffentlicht am:
    01.01.2021
  • Geändert am:
    19.02.2021
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine