0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Firefly Algorithm-Based Artificial Neural Network to Predict the Shear Strength in FRP-Reinforced Concrete Beams

Autor(en): ORCID
ORCID
ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Advances in Civil Engineering, , v. 2023
Seite(n): 1-10
DOI: 10.1155/2023/4062587
Abstrakt:

The shear strength of fiber-reinforced polymer (FRP) reinforced concrete beams is often given a large safety margin by current construction requirements. Six characteristics are utilized as inputs to compute the shear strength of FRP-reinforced concrete beams. This study uses 198 samples from the literature to predict the shear strength of 139 training samples and 59 testing samples. Additionally, the ANN structure is optimized with the firefly algorithm. The FA-ANN model is also compared to ACI-440, CSA-S806, and BISE-99 codes, and the optimized model by Nehdi et al. Findings show that regarding the shear strength of FRP-reinforced concrete beams, the firefly algorithm-optimized model performs better than the other four models. Concerning accuracy, the coefficient of correlation, R2, was calculated as 0.961, while the average absolute error (AAE) is 0.22 for the shear strength of FRP-reinforced beams.

Copyright: © Mohammad Nikoo et al. et al.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10710995
  • Veröffentlicht am:
    21.03.2023
  • Geändert am:
    10.05.2023
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine