0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Fault diagnosis of building electrical system based on compressed perception theory

Autor(en):
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Journal of Physics: Conference Series, , n. 1, v. 2728
Seite(n): 012025
DOI: 10.1088/1742-6596/2728/1/012025
Abstrakt:

Building electrical systems in modern buildings are increasingly playing a pivotal role in bringing people the convenience of life, at the same time, the building electrical system will inevitably fail. And the research of intelligent fault diagnosis algorithms for this field is still in its infancy. At this stage, the accuracy and reliability of fault monitoring and diagnosis of most building electrical systems are yet to be improved. Aiming at the current lack of effective diagnosis of faults in the building electrical system, this paper takes the fault situation of the electrical system in the building as the main object of research, and simulates the common building electrical faults through the comprehensive experimental platform of the building electrical, taking into account the problem of low diagnostic efficiency of the building electrical system. This paper puts forward a fault diagnostic algorithm based on the combination of compressed perception and the K-nearest neighbor algorithm, which is aimed at improving the diagnostic efficiency of building electrical system faults. The results show that the proposed fault diagnosis algorithm can not only improve the accuracy of fault classification but also shorten the time of fault classification, which greatly improves the fault diagnosis efficiency.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1088/1742-6596/2728/1/012025.
  • Über diese
    Datenseite
  • Reference-ID
    10777572
  • Veröffentlicht am:
    12.05.2024
  • Geändert am:
    12.05.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine