0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Fault Detection of In-Service Bridge Expansion Joint Based on Voiceprint Recognition

Autor(en): ORCID
ORCID
ORCID
ORCID
ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Structural Control and Health Monitoring, , v. 2024
Seite(n): 1-23
DOI: 10.1155/2024/1270912
Abstrakt:

Bridge expansion joints (BEJs) in service are susceptible to damage from various factors such as fatigue, impact, and environmental conditions. While visual inspection is the most common approach for inspecting BEJs, it is subjective and labor-intensive. In this paper, we propose a novel methodology for detecting the fault status of BEJs, inspired by voiceprint recognition (VPR) based on audio signals. We establish an Artificial Neural Network to filter nonevent segments from low signal-to-noise ratio signals, achieving an AuC value of 0.981. We design and improve ConFormer VPR models with a multifeature aggregation strategy and cascade them to realize fault detection of BEJs. For three successive tasks in classifying environment sound types, vehicle impact types, and faults, the ConFormer VPR models achieve AuC values of 0.975, 0.925, and 0.886, respectively, demonstrating the feasibility of our methods for unmanned inspection of BEJs. In future research, the introduction of multiple types of damage and the implementation of benchmarking tests are planned to further enhance the capabilities of the system.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1155/2024/1270912.
  • Über diese
    Datenseite
  • Reference-ID
    10769978
  • Veröffentlicht am:
    29.04.2024
  • Geändert am:
    29.04.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine