0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Fault Assessment in Piezoelectric-Based Smart Strand Using 1D Convolutional Neural Network

Autor(en): ORCID


ORCID
ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Buildings, , n. 11, v. 12
Seite(n): 1916
DOI: 10.3390/buildings12111916
Abstrakt:

The smart strand technique has been recently developed as a cost-effective prestress load monitoring solution for post-tensioned engineering systems. Nonetheless, during its lifetime under various operational and environmental conditions, the sensing element of the smart strand has the potential to fail, threatening its functionality and resulting in inaccurate prestress load estimation. This study analyzes the effect of potential failures in the smart strand on impedance characteristics and develops a 1D convolutional neural network (1D CNN) for automated fault diagnosis. Instead of using a realistic experimental structure for which transducer faults can be hard to control accurately, we adopt a well-established finite element model to conduct all experiments. The results show that the impedance characteristics of a damaged smart strand are relatively different from other piezoelectric active sensing devices. While the slope of the susceptance response is widely accepted as a promising fault indicator, this study shows that the resistance response is more favorable for the smart strand. The developed network can accurately diagnose the potential faults in a damaged smart strand with the highest testing accuracy of 94.1%. Since the network can autonomously learn damage-sensitive features without pre-processing, it shows great potential for embedding in impedance-based damage identification systems for real-time structural health monitoring.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10699867
  • Veröffentlicht am:
    10.12.2022
  • Geändert am:
    10.05.2023
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine