0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Failure Mode Detection of Reinforced Concrete Shear Walls Using Ensemble Deep Neural Networks

Autor(en):

Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: International Journal of Concrete Structures and Materials, , n. 1, v. 16
DOI: 10.1186/s40069-022-00522-y
Abstrakt:

Reinforced concrete structural walls (RCSWs) are one of the most efficient lateral force-resisting systems used in buildings, providing sufficient strength, stiffness, and deformation capacities to withstand the forces generated during earthquake ground motions. Identifying the failure mode of the RCSWs is a critical task that can assist engineers and designers in choosing appropriate retrofitting solutions. This study evaluates the efficiency of three ensemble deep neural network models, including the model averaging ensemble, weighted average ensemble, and integrated stacking ensemble for predicting the failure mode of the RCSWs. The ensemble deep neural network models are compared against previous studies that used traditional well-known ensemble models (AdaBoost, XGBoost, LightGBM, CatBoost) and traditional machine learning methods (Naïve Bayes, K-Nearest Neighbors, Decision Tree, and Random Forest). The weighted average ensemble model is proposed as the best-suited prediction model for identifying the failure mode since it has the highest accuracy, precision, and recall among the alternative models. In addition, since complex and advanced machine learning-based models are commonly referred to as black-box, the SHapley Additive exPlanation method is also used to interpret the model workflow and illustrate the importance and contribution of the components that impact determining the failure mode of the RCSWs.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1186/s40069-022-00522-y.
  • Über diese
    Datenseite
  • Reference-ID
    10746201
  • Veröffentlicht am:
    04.12.2023
  • Geändert am:
    04.12.2023
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine