0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Experimental Study on the Damage and Crack Evolution Characteristics of TS-RCR Structural Bodies under Cyclic Loading and Unloading

Autor(en): ORCID
ORCID
ORCID
ORCID
ORCID
ORCID
ORCID
ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Advances in Civil Engineering, , v. 2023
Seite(n): 1-17
DOI: 10.1155/2023/6650396
Abstrakt:

Four representative TS-RCR (three-soft rock-coal-rock) structural bodies were selected according to the lithofacies analysis of coal measures in the Xiangshui Coal Mine, Guizhou, China, to analyze the mechanical properties, internal structure damage characteristics, and crack evolution law of the TS-RCR structural body composed of a soft roof, a soft floor, and soft coal seams. The mechanical model of the TS-RCR structural body was proposed. (1) The stress-strain curves of TS-RCR structures with different lithologies under cyclic loading and unloading show a change rule of sparsity, density, and sparsity with the increased cycles. The deformation of TS-RCR structures under cyclic loading and unloading can be divided into four stages. When the height ratio of the TS-RCR structural body was the same, the higher the strength of the upper and lower rocks, the more cycles the TS-RCR structural body had, and the denser the cyclic loading and unloading curve. On the contrary, the fewer cycles the TS-RCR structural body had, the sparser the cyclic loading and unloading curve. (2) The T2 (transverse relaxation time) spectrum curves of the structural bodies were monitored at about 1 and 10 ms, and two obvious peaks were detected, indicating micropores and mesopores with a large volume in the structural body. Signal intensity increased at the relaxation time of 1 ms, decreased at 10–100 ms, and increased slightly at 100–1000 ms. The pore structure of the structural body with different lithologies changed significantly with the increased cycle number. (3) The damage and failure process of the structural body was roughly divided into three periods according to the time-history analysis of acoustic-emission AF (the ratio of acoustic-emission ringing count to duration) of the structural body: the active period with a relatively low AF value (AF < 60 kHz) in the 1st-2nd cycles; the rising period with a relatively stable increase of the AF value in the 3rd-4th cycles; and the explosive period with a relatively high AF value (AF ≥ 60 kHz) in the 5th cycles. According to the relationship between the RA (the ratio of the rise time to the amplitude of the acoustic-emission-detection wave) value and time, the evolution law of the RA value and AF value of structures with different lithologies is similar in different periods under cyclic loading and unloading.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1155/2023/6650396.
  • Über diese
    Datenseite
  • Reference-ID
    10727294
  • Veröffentlicht am:
    30.05.2023
  • Geändert am:
    30.05.2023
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine