0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Experimental Study on Bonding Performance between Prestressed Concrete Pipe Piles and Core Grout

Autor(en):

ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Advances in Civil Engineering, , v. 2023
Seite(n): 1-10
DOI: 10.1155/2023/5552990
Abstrakt:

To make the bearing capacity tests safer and more affordable for prestressed high-strength concrete (PHC) piles, this paper proposes a reaction device for anchor piles filled with core grout based on the geometric and mechanical characteristics of PHC piles. The proposed reaction device has the advantages of convenient construction, strong controllability of the connection quality and low cost. In addition, the pile will not experience prestress unloading or tensile stress under the effect of the upward pulling load. To promote the application of the reaction device developed for PHC pile bearing capacity tests, experimental studies are conducted on the bonding performance between the core grout and the inner wall of the PHC pile. The influence of various factors such as the strength of the core grout, the grouting length, the curing time, and the inner diameter of the PHC pile on the bond strength between the core grout and the inner wall of the PHC pile are investigated. Results show that as the inner diameter of the PHC pile increases, the bond strength between the core grout and the inner wall of the PHC pile decreases with a maximum difference of 5%. The bond strength decreases as the grouting length increases, and gradually stabilizes, with a difference of no more than 10% between the maximum and minimum bond strength values. The higher the strength of the grout is, the greater the bond strength between the core grout and the inner wall of the PHC pile is. The bond strength between the core grout and the inner wall of the PHC pile increases with the increase of the curing time within 28 days of curing, and the bond strength at 3 days meets the requirements of the PHC pile bearing capacity test.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1155/2023/5552990.
  • Über diese
    Datenseite
  • Reference-ID
    10740501
  • Veröffentlicht am:
    12.09.2023
  • Geändert am:
    12.09.2023
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine