Evaluation of Waterlogging Risk in an Urban Subway Station
Autor(en): |
Haiying Yu
Chuan Liang Ping Li Kaijie Niu Faxing Du Junhu Shao Yuyong Liu |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Advances in Civil Engineering, 2019, v. 2019 |
Seite(n): | 1-12 |
DOI: | 10.1155/2019/5393171 |
Abstrakt: |
Most cities in the world have extensive underground facilities, including public transport and commercial facilities, such as shopping malls, subways, and parks. Safety of underground space has been an important aspect of urban safety. Due to the influences of global climate change and human activities, waterlogging disasters in cities are becoming increasingly serious and underground facilities easily suffer from waterlogging disasters. Moreover, waterlogging disasters in cities can cause different degrees of damage to construction period and operating period of urban subway stations. By using the optimal combination weighting method combining subjective and objective weighting, this study assigned weights to evaluation factors. Based on this, a fuzzy synthetic evaluation model for waterlogging risk in the construction and operating periods of urban subway stations was established. Furthermore, the model was applied and verified to be effective in Chengdu Metro Line 4, Sichuan province, China, and the evaluation results coincided with the actual situation. The model in the study provides a new idea for evaluating waterlogging risks in urban subway stations, and these results can offer important information for local government to strengthen management on waterlogging risks. |
Copyright: | © 2019 Haiying Yu et al. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
1.44 MB
- Über diese
Datenseite - Reference-ID
10376510 - Veröffentlicht am:
12.10.2019 - Geändert am:
02.06.2021