Estimating Space-Cooling Energy Consumption and Indoor PM2.5 Exposure across Hong Kong Using a City-Representative Housing Stock Model
Autor(en): |
Xuyang Zhong
Zhiang Zhang Wei Wu Ruijun Zhang |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 16 September 2022, n. 9, v. 12 |
Seite(n): | 1414 |
DOI: | 10.3390/buildings12091414 |
Abstrakt: |
High-quality data on building energy use and indoor pollution are critical to supporting government efforts to reduce carbon emissions and improve the population’s health. This study describes the development of a city-representative housing stock model used for estimating space-cooling energy use and indoor PM2.5 exposure across the Hong Kong housing stock. Archetypes representative of Hong Kong dwellings were developed based on geographically-referenced housing databases. Simulations of unique combinations of archetype, occupation, and environment were run using EnergyPlus, estimating the annual space-cooling energy consumption and annual average PM2.5 exposure concentrations under both non-retrofit and retrofit scenarios. Results show that modern village houses and top-floor flats in high-rise residential buildings, on average, used 19% more space-cooling energy than other archetypes. Dwellings in urban areas had lower exposure to outdoor-sourced PM2.5 and higher exposure to indoor-sourced PM2.5 compared to those in rural areas. The percentage decrease in space-cooling energy consumption caused by energy efficiency retrofits, including external wall insulation, low-e windows, and airtightening, varied significantly based on archetype. The implementation of external wall insulation in the housing stock led to an average decrease of 3.5% in indoor PM2.5 exposure, whilst airtightening and low-e windows resulted in 7.9% and 0.2% average increases in exposure, respectively. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
Geografische Orte
30.51 MB
- Über diese
Datenseite - Reference-ID
10692615 - Veröffentlicht am:
23.09.2022 - Geändert am:
10.11.2022