0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Equipment Sounds’ Event Localization and Detection Using Synthetic Multi-Channel Audio Signal to Support Collision Hazard Prevention

Autor(en): ORCID


Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Buildings, , n. 11, v. 14
Seite(n): 3347
DOI: 10.3390/buildings14113347
Abstrakt:

Construction workplaces often face unforeseen collision hazards due to a decline in auditory situational awareness among on-foot workers, leading to severe injuries and fatalities. Previous studies that used auditory signals to prevent collision hazards focused on employing a classical beamforming approach to determine equipment sounds’ Direction of Arrival (DOA). No existing frameworks implement a neural network-based approach for both equipment sound classification and localization. This paper presents an innovative framework for sound classification and localization using multichannel sound datasets artificially synthesized in a virtual three-dimensional space. The simulation synthesized 10,000 multi-channel datasets using just fourteen single sound source audiotapes. This training includes a two-staged convolutional recurrent neural network (CRNN), where the first stage learns multi-label sound event classes followed by the second stage to estimate their DOA. The proposed framework achieves a low average DOA error of 30 degrees and a high F-score of 0.98, demonstrating accurate localization and classification of equipment near workers’ positions on the site.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.3390/buildings14113347.
  • Über diese
    Datenseite
  • Reference-ID
    10804450
  • Veröffentlicht am:
    10.11.2024
  • Geändert am:
    10.11.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine