Environmental Sustainability Study of Urban Waterfront Landscapes Based on the LCA–Emergy–Carbon Footprint and Artificial Neural Network Method
Autor(en): |
Gang Jiang
Lanlan Zuo Ashish T. Asutosh Junxue Zhang |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 1 Februar 2024, n. 2, v. 14 |
Seite(n): | 386 |
DOI: | 10.3390/buildings14020386 |
Abstrakt: |
The ecological landscape design of urban rivers plays a crucial role in mitigating the urban heat island effect and preserving urban ecology. This study focuses on the construction process data of key landscape nodes along Nanjing’s urban rivers. By employing a whole life cycle emergy approach and carbon emission method, the sustainable changes in the landscape system are quantitatively assessed. Furthermore, artificial neural networks have been used to conduct long-term sustainability analysis and predictions for the landscape system. The research findings reveal that over time, the maintenance investment in landscape projects gradually becomes dominant, increasing from 2% in the first year to approximately 75% after 30 years. This phenomenon signifies a decline in the efficiency of the landscape system. Sustaining the ecological balance of the landscape system necessitates continuous inputs of material flow, energy flow, and information flow. The major contributors to carbon emissions in the landscape engineering system are diesel fuel, cement, and steel. This highlights opportunities for sustainable improvement from a low-carbon perspective. To enhance the ecological sustainability of urban waterfront landscapes, three measures are proposed: sponge city construction concepts, coupled sewage treatment systems, and information flow monitoring systems. The effectiveness of these measures was preliminarily validated. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
7.53 MB
- Über diese
Datenseite - Reference-ID
10760181 - Veröffentlicht am:
15.03.2024 - Geändert am:
25.04.2024