0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Ensemble Learning Models for Prediction of Punching Shear Strength in RC Slab-Column Connections

Autor(en): ORCID



Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Civil Engineering Journal, , n. 3, v. 10
Seite(n): 1-20
DOI: 10.28991/cej-sp2024-010-01
Abstrakt:

In reinforced concrete (RC) structures, accurate prediction of the punching shear strength (PSS) of slab-column connections is imperative for ensuring safety. The existing equations in the literature show variability in defining parameters influencing PSS. They neglect potential variable interactions and rely on a limited dataset. This study aims to develop an accurate and reliable model to predict the PSS of slab-column connections. An extensive dataset, including 616 experimental results, was collected from earlier studies. Six robust ensemble machine learning techniques—random forest, gradient boosting, extreme gradient boosting, adaptive boosting, gradient boosting with categorical feature support, and light gradient boosting machines—are employed to predict the PSS. The findings indicate that gradient boosting stands out as the most accurate method compared to other prediction models and existing equations in the literature, achieving a coefficient of determination of 0.986. Moreover, this study utilizes techniques to explain machine learning predictions. A feature importance analysis is conducted, wherein it is observed that the reinforcement ratio and compressive strength of concrete demonstrate the highest influence on the PSS output. SHapley Additive exPlanation is conducted to represent the influence of variables on PSS. A graphical user interface for PSS prediction was developed for users’ convenience. Doi: 10.28991/CEJ-SP2024-010-01 Full Text: PDF

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.28991/cej-sp2024-010-01.
  • Über diese
    Datenseite
  • Reference-ID
    10789971
  • Veröffentlicht am:
    20.06.2024
  • Geändert am:
    20.06.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine