Ensemble Learning Approach for Developing Performance Models of Flexible Pavement
Autor(en): |
Ali Taheri
(Department of Civil and Environmental Engineering, Florida State University, College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310, USA)
John Sobanjo (Department of Civil and Environmental Engineering, Florida State University, College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL 32310, USA) |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Infrastructures, 15 Mai 2024, n. 5, v. 9 |
Seite(n): | 78 |
DOI: | 10.3390/infrastructures9050078 |
Abstrakt: |
This research utilizes the Long-Term Pavement Performance database, focusing on devel-oping a predictive model for flexible pavement performance in the Southern United States. Analyzing 367 pavement sections, this study investigates crucial factors influencing asphaltic concrete (AC) pavement deterioration, such as structural and material components, air voids, compaction density, temperature at laydown, traffic load, precipitation, and freeze–thaw cycles. The objective of this study is to develop a predictive machine learning model for AC pavement wheel path cracking (WpCrAr) and the age at which cracking initiates (WpCrAr) as performance indicators. This study thoroughly investigated three ensemble machine learning models, including random forest, extremely randomized trees (ETR), and extreme gradient boosting (XGBoost). It was observed that XGBoost, optimized using Bayesian methods, emerged as the most effective among the evaluated models, demonstrating good predictive accuracy, with an R2 of 0.79 for WpCrAr and 0.92 for AgeCrack and mean absolute errors of 1.07 and 0.74, respectively. The most important features influencing crack initiation and progression were identified, including equivalent single axle load (ESAL), pavement age, number of layers, precipitation, and freeze–thaw cycles. This paper also showed the impact of pavement material combinations for base and subgrade layers on the delay of crack initiation. |
Copyright: | © 2024 the Authors. Licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
16.55 MB
- Über diese
Datenseite - Reference-ID
10800642 - Veröffentlicht am:
23.09.2024 - Geändert am:
23.09.2024