0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

An ensemble approach for enhancing generalization and extendibility of deep learning facilitated by transfer learning: principle and application in curing monitoring

Autor(en):





Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Smart Materials and Structures, , n. 11, v. 32
Seite(n): 115022
DOI: 10.1088/1361-665x/acfde0
Abstrakt:

Machine learning (ML) and deep learning (DL) have exhibited significant advantages compared to conventional data analysis methods. However, the limitations of poor generalization and extendibility impede the broader application of these methods beyond specific learning tasks. To address this challenge, this study proposes a transfer learning-based ensemble approach called SMART. This approach incorporates synthetic minority oversampling technique, average reinforced interpolation, series data imaging, and fine-tuning. To validate the effectiveness of SMART, we conduct experiments on curing monitoring of polymeric composites and construct a hybrid dataset with highly heterogeneous features. We compare the performance of SMART with exemplary ML algorithms using conventional evaluation indicators, including Accuracy, Precision, Recall, and F1-score. The experimental results demonstrate that the SMART approach exhibits superior generalization capacity and extendibility, achieving indicator scores above 0.9900 in new scenarios. These findings suggest that the proposed SMART approach has the potential to break through the limitations of conventional ML and DL models, enabling wider applications in the industrial sectors.

Copyright: © 2023 Jianjian Zhu, Zhongqing Su, Zhibin Han, Zifeng Lan, Qingqing Wang, Mabel Mei-po Ho
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10742609
  • Veröffentlicht am:
    28.10.2023
  • Geändert am:
    07.02.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine