0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Enhancing Seismic Performance: A Comprehensive Study on Masonry and Reinforced Concrete Structures Considering Soil Properties and Environmental Impact Assessment

Autor(en): ORCID
ORCID
ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Advances in Civil Engineering, , v. 2024
Seite(n): 1-20
DOI: 10.1155/2024/4505901
Abstrakt:

Approximately 20,000 people are killed annually on average by building and infrastructure collapses and failures caused by seismic activities. In earlier times, seismic design codes and specifications set minimal requirements for life safety performance levels. Earthquakes can be thought of as recurring events in seismically active areas, with severity states ranging from serviceability to ultimate levels. Buildings designed in accordance with site-specific response spectra, which take into account soil properties based on ground motion amplification data, are better at withstanding such forces and serving their design purposes. This study aims to investigate the site response of reinforced and masonry buildings, considering the effect of soil properties based on the amplification of ground motion data, and to compare the life cycle assessment of the buildings under consideration based on the design and the site-specific response spectrum. In terms of soil properties and site-specific response spectra, STRATA is used to determine the site-specific response for the considered locations for a return period of 475 years for 100 realizations based on the randomization of site properties. For structural analysis, AxisVM software, which is a compatible finite element analysis, is used for building design and analysis, generating comparative results based on the design- and site-specific spectra. To determine and identify potential failures in the model, response spectra were applied to understand the difference in horizontal deflection in two different instances (for elastic design- and site-specific spectra). After building design and analysis is performed, a life cycle analysis in terms of environmental impact assesments using OpenLCA and IdematLightLCA is done. This is done to ascertain the additional expenses in terms of ecocosts and carbon footprints on some failed elements in the structure which are required to make the buildings more resilient when the site-specific response spectrum is applied and to compare the potential economic losses that may occur based on ecological costs. The study presents a comprehensive investigation into the seismic response of masonry and reinforced concrete buildings in Győr, Hungary, incorporating advanced geophysical techniques like multichannel surface wave (MASW) and structural analysis software, AxisVM. Additionally, tailored retrofitting strategies are explored to enhance structural resilience in seismic-prone regions. Significant ground amplifications in soil properties across different profiles are revealed, emphasizing the effectiveness of these strategies in reducing structural deflection and improving resilience. Highlights of the results are observed where the site-specific response spectra are higher than the EC8 design response spectrum. Furthermore, the research underscores the substantial environmental impact, considering both ecocosts and CO2 emissions associated with retrofitting measures, highlighting the importance of sustainable structural interventions in mitigating seismic risks.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1155/2024/4505901.
  • Über diese
    Datenseite
  • Reference-ID
    10786154
  • Veröffentlicht am:
    20.06.2024
  • Geändert am:
    20.06.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine