Enhancing Recovery of Structural Health Monitoring Data Using CNN Combined with GRU
Autor(en): |
Nguyen Thi Cam Nhung
Hoang Nguyen Bui Tran Quang Minh |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Infrastructures, 24 Oktober 2024, n. 11, v. 9 |
Seite(n): | 205 |
DOI: | 10.3390/infrastructures9110205 |
Abstrakt: |
Structural health monitoring (SHM) plays a crucial role in ensuring the safety of infrastructure in general, especially critical infrastructure such as bridges. SHM systems allow the real-time monitoring of structural conditions and early detection of abnormalities. This enables managers to make accurate decisions during the operation of the infrastructure. However, for various reasons, data from SHM systems may be interrupted or faulty, leading to serious consequences. This study proposes using a Convolutional Neural Network (CNN) combined with Gated Recurrent Units (GRUs) to recover lost data from accelerometer sensors in SHM systems. CNNs are adept at capturing spatial patterns in data, making them highly effective for recognizing localized features in sensor signals. At the same time, GRUs are designed to model sequential dependencies over time, making the combined architecture particularly suited for time-series data. A dataset collected from a real bridge structure will be used to validate the proposed method. Different cases of data loss are considered to demonstrate the feasibility and potential of the CNN-GRU approach. The results show that the CNN-GRU hybrid network effectively recovers data in both single-channel and multi-channel data loss scenarios. |
Copyright: | © 2024 the Authors. Licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
4.94 MB
- Über diese
Datenseite - Reference-ID
10812558 - Veröffentlicht am:
17.01.2025 - Geändert am:
17.01.2025