0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Enhancing Large-Diameter Tunnel Construction Safety with Robust Optimization and Machine Learning Integrated into BIM

Autor(en):






Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: The Open Civil Engineering Journal, , n. 1, v. 18
DOI: 10.2174/0118741495343680240911053413
Abstrakt:

Aim

This study aims to enhance safety in large diameter tunnel construction by integrating robust optimization and machine learning (ML) techniques with Building Information Modeling (BIM). By acquiring and preprocessing various datasets, implementing feature engineering, and using algorithms like SVM, decision trees, ANN, and random forests, the study demonstrates the effectiveness of ML models in risk prediction and mitigation, ultimately advancing safety performance in civil engineering projects.

Background

Large diameter tunnel construction presents significant safety challenges. Traditional methods often fall short of effectively predicting and mitigating risks. This study addresses these gaps by integrating robust optimization and machine learning (ML) approaches with Building Information Modeling (BIM) technology. By acquiring and preprocessing diverse datasets, implementing feature engineering, and employing ML algorithms, the study aims to enhance risk prediction and safety measures in tunnel construction projects.

Objective

The objective of this study is to improve safety in large diameter tunnel construction by integrating robust optimization and machine learning (ML) techniques with Building Information Modeling (BIM). This involves acquiring and preprocessing diverse datasets, using feature engineering to extract key parameters, and applying ML algorithms like SVM, decision trees, ANN, and random forests to predict and mitigate risks, ultimately enhancing safety performance in civil engineering projects.

Methods

The study's methods include acquiring and preprocessing various datasets (geological, structural, environmental, operational, historical, and simulation). Feature engineering techniques are used to extract key safety parameters for tunnels. Machine learning algorithms, such as decision trees, support vector machines (SVM), artificial neural networks, and random forests, are employed to analyze the data and predict construction risks. The SVM algorithm, with a 98.76% accuracy, is the most reliable predictor.

Results

The study found that the Support Vector Machine (SVM) algorithm was the most accurate predictor of risks in large diameter tunnel construction, achieving a 98.76% accuracy rate. Other models, such as decision trees, artificial neural networks, and random forests, also performed well, validating the effectiveness of ML-based solutions for risk assessment and mitigation. These predictive models enable stakeholders to monitor construction, allocate resources, and implement preventative measures effectively.

Conclusion

The study concludes that integrating machine learning (ML) approaches with Building Information Modeling (BIM) significantly improves safety in large diameter tunnel construction. The Support Vector Machine (SVM) algorithm, with 98.76% accuracy, is the most reliable predictor of risks. Other models, like decision trees, artificial neural networks, and random forests, also perform well, validating ML-based solutions for risk assessment. Adopting these ML approaches enhances safety performance and resource management in civil engineering projects.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.2174/0118741495343680240911053413.
  • Über diese
    Datenseite
  • Reference-ID
    10803130
  • Veröffentlicht am:
    10.11.2024
  • Geändert am:
    10.11.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine