0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Enhancing Generalizability of a Machine Learning Model for Infrared Thermographic Defect Detection by Using 3D Numerical Modeling

Autor(en):

ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Frattura ed Integrità Strutturale, , n. 70, v. 18
Seite(n): 177-191
DOI: 10.3221/igf-esis.70.10
Abstrakt:

The paper describes the implementation of 3D numerical simulation in machine learning models used in infrared thermographic nondestructive testing.  The enhancement of generalizability of such models emerges as a decisive factor for producing trust-worthy test results. First, it is demonstrated that the models trained on datasets with fixed parameters yield limited defect detection capabilities. The concept of training datasets, which include subtle variations in material thickness, thermal conductivity, as well as various combinations of material density and heat capacity, provides the best learning results and a noticeable ability to identify defects in all test datasets. Second, the model robustness in respect to noise is explored to demonstrate its ability to withstand additive and multiplicative random noise. Third, potentials of some known techniques of thermographic data processing, such as Thermographic Signal Reconstruction, Fast Fourier Transform and Temperature Contrast, are examined. In particular, the use of the Temperature Contrast data ensured sensitivity (True Positive Rate) better than 98% across all test datasets.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.3221/igf-esis.70.10.
  • Über diese
    Datenseite
  • Reference-ID
    10798260
  • Veröffentlicht am:
    01.09.2024
  • Geändert am:
    01.09.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine