0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Enhancing Day-Ahead Cooling Load Prediction in Tropical Commercial Buildings Using Advanced Deep Learning Models: A Case Study in Singapore

Autor(en):
ORCID
ORCID



Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Buildings, , n. 2, v. 14
Seite(n): 397
DOI: 10.3390/buildings14020397
Abstrakt:

Commercial buildings in hot and humid tropical climates rely significantly on cooling systems to maintain optimal occupant comfort. A well-accurate day-ahead load profile prediction plays a pivotal role in planning the energy requirements of cooling systems. Despite the pressing need for effective day-ahead cooling load predictions, current methodologies have not fully harnessed the potential of advanced deep-learning techniques. This paper aims to address this gap by investigating the application of innovative deep-learning models in day-ahead hourly cooling load prediction for commercial buildings in tropical climates. A range of multi-output deep learning techniques, including Deep Neural Networks (DNNs), Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Long Short-Term Memory networks (LSTMs), are employed to enhance prediction accuracy. Furthermore, these individual deep learning techniques are synergistically integrated to create hybrid models, such as CNN-LSTM and Sequence-to-Sequence models. Experiments are conducted to choose the time horizons from the past that can serve as input to the models. In addition, the influence of various categories of input parameters on prediction performance has been assessed. Historical cooling load, calendar features, and outdoor weather parameters are found in decreasing order of influence on prediction accuracy. This research focuses on buildings located in Singapore and presents a comprehensive case study to validate the proposed models and methodologies. The sequence-to-sequence model provided better performance than all the other models. It offered a CV-RMSE of 7.4%, 10%, and 6% for SIT@Dover, SIT@NYP, and the simulated datasets, which were 2.3%, 3%, and 1% less, respectively, than the base Deep Neural Network model.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10760258
  • Veröffentlicht am:
    15.03.2024
  • Geändert am:
    25.04.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine