0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Enhanced Hybrid U-Net Framework for Sophisticated Building Automation Extraction Utilizing Decay Matrix

Autor(en):
ORCID



Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Buildings, , n. 11, v. 14
Seite(n): 3353
DOI: 10.3390/buildings14113353
Abstrakt:

Automatically extracting buildings from remote sensing imagery using deep learning techniques has become essential for various real-world applications. However, mainstream methods often encounter difficulties in accurately extracting and reconstructing fine-grained features due to the heterogeneity and scale variations in building appearances. To address these challenges, we propose LDFormer, an advanced building segmentation model based on linear decay. LDFormer introduces a multi-scale detail fusion bridge (MDFB), which dynamically integrates shallow features to enhance the representation of local details and capture fine-grained local features effectively. To improve global feature extraction, the model incorporates linear decay self-attention (LDSA) and depthwise large separable kernel multi-layer perceptron (DWLSK-MLP) optimizations in the decoder. Specifically, LDSA employs a linear decay matrix within the self-attention mechanism to address long-distance dependency issues, while DWLSK-MLP utilizes step-wise convolutions to achieve a large receptive field. The proposed method has been evaluated on the Massachusetts, Inria, and WHU building datasets, achieving IoU scores of 76.10%, 82.87%, and 91.86%, respectively. LDFormer demonstrates superior performance compared to existing state-of-the-art methods in building segmentation tasks, showcasing its significant potential for building automation extraction.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10804632
  • Veröffentlicht am:
    10.11.2024
  • Geändert am:
    10.11.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine