Enhanced Hybrid U-Net Framework for Sophisticated Building Automation Extraction Utilizing Decay Matrix
Autor(en): |
Ting Wang
Zhuyi Gong Anqi Tang Qian Zhang Yun Ge |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 22 Oktober 2024, n. 11, v. 14 |
Seite(n): | 3353 |
DOI: | 10.3390/buildings14113353 |
Abstrakt: |
Automatically extracting buildings from remote sensing imagery using deep learning techniques has become essential for various real-world applications. However, mainstream methods often encounter difficulties in accurately extracting and reconstructing fine-grained features due to the heterogeneity and scale variations in building appearances. To address these challenges, we propose LDFormer, an advanced building segmentation model based on linear decay. LDFormer introduces a multi-scale detail fusion bridge (MDFB), which dynamically integrates shallow features to enhance the representation of local details and capture fine-grained local features effectively. To improve global feature extraction, the model incorporates linear decay self-attention (LDSA) and depthwise large separable kernel multi-layer perceptron (DWLSK-MLP) optimizations in the decoder. Specifically, LDSA employs a linear decay matrix within the self-attention mechanism to address long-distance dependency issues, while DWLSK-MLP utilizes step-wise convolutions to achieve a large receptive field. The proposed method has been evaluated on the Massachusetts, Inria, and WHU building datasets, achieving IoU scores of 76.10%, 82.87%, and 91.86%, respectively. LDFormer demonstrates superior performance compared to existing state-of-the-art methods in building segmentation tasks, showcasing its significant potential for building automation extraction. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
2.78 MB
- Über diese
Datenseite - Reference-ID
10804632 - Veröffentlicht am:
10.11.2024 - Geändert am:
10.11.2024