Energy-Efficient Retrofit Measures (EERM) in Residential Buildings: An Application of Discrete Choice Modelling
Autor(en): |
Clara Camarasa
Lokesh Kumar Kalahasthi Ivan Sanchez-Díaz Leonardo Rosado Lena Hennes Katrin Bienge Ian Hamilton |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 21 Mai 2021, n. 6, v. 11 |
Seite(n): | 257 |
DOI: | 10.3390/buildings11060257 |
Abstrakt: |
Cross-country evidence on the adoption of energy-efficient retrofit measures (EERMs) in residential buildings is critical to supporting the development of national and pan-European policies aimed at fostering the energy performance upgrade of the building stock. In this light, the aim of this paper is to advance in the understanding of the probability of certain EERMs taking place in eight EU countries, according to a set of parameters, such as building typology, project types, and motivation behind the project. Using these parameters collected via a multi-country online survey, a set of discrete-choice (conditional logit) models are estimated on the probability of selecting a choice of any combination of 33 EERMs across the sampled countries. Results show that actions related to the building envelope are the most often-addressed across countries and single building elements or technology measures have a higher probability of being implemented. The modelling framework developed in this study contributes to the scientific community in three ways: (1) establishing an empirical relationship among EERMs and project (i.e., retrofit and deep retrofit), (2) identifying commonalities and differences across the selected countries, and (3) quantifying the probabilities and market shares of various EERMs. |
Copyright: | © 2021 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
2.25 MB
- Über diese
Datenseite - Reference-ID
10613486 - Veröffentlicht am:
09.07.2021 - Geändert am:
14.09.2021