0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Electromagnetic wave-driven deep learning for structural evaluation of reinforced concrete strength

Autor(en): ORCID

ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Journal of Civil Engineering and Management, , n. 0, v. 0
Seite(n): 1-19
DOI: 10.3846/jcem.2024.22266
Abstrakt:

Monitoring the performance of reinforced concrete structures, particularly in terms of strength reduction, presents significant challenges due to the practical limitations of traditional detection methods. This study introduces an innovative framework that incorporates a non-destructive technique using electromagnetic waves (EM-waves) transmitted via Radio Frequency Identification (RFID) technology, combined with two-dimensional (2-D) Fourier transform, fractal dimension analysis, and deep learning techniques to predict reductions in structural strength. Experiments were conducted on three reinforced concrete beam (RCB) specimens exhibiting various levels of reinforcement corrosion. From these, a dataset of 1,800 EMwave images was generated and classified into “normal” and “reduced strength” categories. These categories were used to train and validate a Convolutional Neural Network (CNN), which demonstrated robust performance, achieving a high accuracy of 0.91 and an F1-score of 0.93 in classifying instances of reduced structural strength. This approach offers a promising solution for detecting strength reduction in reinforced concrete infrastructures, enhancing both safety and maintenance efficiency.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.3846/jcem.2024.22266.
  • Über diese
    Datenseite
  • Reference-ID
    10805070
  • Veröffentlicht am:
    10.11.2024
  • Geändert am:
    10.11.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine