0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Elastic Modulus Prediction of Ultra-High-Performance Concrete with Different Machine Learning Models

Autor(en):





Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Buildings, , n. 10, v. 14
Seite(n): 3184
DOI: 10.3390/buildings14103184
Abstrakt:

Elastic modulus, crucial for assessing material stiffness and structural deformation, has recently gained popularity in predictions using data-driven methods. However, research systematically comparing different machine learning models under the same conditions, especially for ultra-high-performance concrete (UHPC), remains limited. In this study, 10 different machine learning models were evaluated for their capacity to predict the elastic modulus of UHPC. The results showed that XGBoost demonstrated the highest accuracy in predictions with large training datasets, followed by KNNs. For smaller training datasets, Decision Tree exhibited the greatest accuracy, while XGBoost was the second-best performing model. Linear regression displayed the lowest accuracy. XGBoost demonstrated the most potential for accurately predicting the elastic modulus of UHPC, particularly when a comprehensive dataset is available for model training. The optimized XGBoost exhibited better predictive performance than fitting equations for different UHPC formulations. The findings of this study provide valuable insights for researchers and engineers working on the data-driven design and characterization of UHPC.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.3390/buildings14103184.
  • Über diese
    Datenseite
  • Reference-ID
    10804447
  • Veröffentlicht am:
    10.11.2024
  • Geändert am:
    10.11.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine