Effects of Wetting–Drying Cycles on the Macro and Micro Properties of the Cement-Stabilized Soil with Curing Agent
Autor(en): |
Wenjun Hu
Kun Li Wenhao Yin Han Zhang Yi Xue Yutong Han Pingyun Liu |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 19 Juni 2024, n. 6, v. 14 |
Seite(n): | 1716 |
DOI: | 10.3390/buildings14061716 |
Abstrakt: |
Cement-stabilized soil is a commonly used pavement base/bottom base material. Adding a suitable curing agent to cement-stabilized soil can effectively reduce the dosage of cement, meet the strength requirements, and also greatly improve its water stability. In this paper, three kinds of cement dosage (6%, 8%, and 10%) of cement-stabilized soil were selected to add a 0.04% organic liquid curing agent, and then compared with high-dose cement (10% and 12%)-stabilized soil. The influence of wetting–drying cycles on the mechanical properties of the five stabilized soils was discussed. The mineral composition of cement-stabilized soils before and after the addition of a curing agent was analyzed by X-ray diffraction (XRD), and the microscopic morphology of 10% cement-stabilized soils with a curing agent was studied by scanning electron microscopy (SEM). The macroscopic test shows that the unconfined compressive strength of solidified cement-stabilized soil can be divided into three stages with the increase in the times of the wetting–drying cycles, which are the rapid decay stage, stable enhancement stage, and stable decay stage. The wetting–drying stability coefficient first increases, and then decreases with the increase in the times of the wetting–drying cycles. The microscopic test shows that the addition of a curing agent can enhance the content of hydration products in the cement-stabilized soil specimen; at the curing age of 28 d, with the increase in the times of the wet–dry cycles, the structure of the solidified cement-stabilized soil gradually broke down. The surface porosity P and pore diameter d showed an overall upward trend but decreased at the fifth wetting–drying cycle. The pore orientation weakened. The results show that the resistance of cement-stabilized soil with a curing agent is obviously better than that of cement-stabilized soil under wet–dry conditions. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
7.52 MB
- Über diese
Datenseite - Reference-ID
10787576 - Veröffentlicht am:
20.06.2024 - Geändert am:
20.06.2024