Effects of Vertical Ground Motion on Pedestrian-Induced Vibrations of Footbridges: Numerical Analysis and Machine Learning-Based Prediction
Autor(en): |
Xinxin Wei
Bo Fu Wenyan Wu Xinrui Liu |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 1 Dezember 2022, n. 12, v. 12 |
Seite(n): | 2138 |
DOI: | 10.3390/buildings12122138 |
Abstrakt: |
Current codes and guidelines for the dynamic design of footbridges often only specify the pedestrian-induced excitations. However, earthquakes may occur during the passing stage of pedestrians in earthquake-prone regions. In addition, modern footbridges tend to be slender and are sensitive to vertical ground motions. Therefore, we investigate the effects of vertical ground motion on pedestrian-induced vibrations of footbridges. A total of 138 footbridges with different materials, dimensions, and structural types are considered as the target structures. The classical social force model combined with the pedestrian-induced load is used to simulate crowd loads for the scenarios with six typical pedestrian densities. Furthermore, 59 vertical ground motions with four seismic intensities are taken as the seismic inputs. An amplification factor is introduced to quantify the amplification effects of vertical ground motion on human-induced vibrations of footbridges. Four machine learning (ML) algorithms are used to predict the amplification factor. The feature importance indicates that the scaled peak ground acceleration, the pedestrian density, and the bridge span are the three most important parameters influencing the amplification factor. Finally, the vibration serviceability of the footbridge subjected to both crowd load and vertical ground motion is assessed. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
7.49 MB
- Über diese
Datenseite - Reference-ID
10700416 - Veröffentlicht am:
11.12.2022 - Geändert am:
15.02.2023