0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

An Effective Self-Attention-Based Hybrid Model for Short-Term Traffic Flow Prediction

Autor(en): ORCID


Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Advances in Civil Engineering, , v. 2023
Seite(n): 1-10
DOI: 10.1155/2023/9308576
Abstrakt:

Vehicle exhaust is one of the main sources of carbon emissions. The short_term traffic flow prediction plays an important role in alleviating traffic congestion, optimizing the travel structure, and reducing traffic carbon emissions. The current advanced models of short_term traffic flow prediction are evaluated in this work, especially their inadequacies. To improve the prediction accuracy and ensure fine traffic management, an effective self-attention-based hybrid model is proposed to predict the short_term traffic flow. The proposed model includes an encoder-decoder neural network module and a self-attention mechanism module. The self-attention mechanism module is applied as a feature extraction unit in this hybrid model to enhance the ability of key information capture and to settle the problem on key information disappearing due to the increasing sequence length in traditional models. The dataset of the Guangdong freeway toll station is used for the experimental testing. Compared with several baseline models, the proposed model is more suitable for real-time prediction and can provide highly accurate results. Also, a better interpretability is presented in this proposed model. The experimental results showed that MAE, RMSE, and MAPE of the proposed model are 3.01, 4.38, and 12.99%, respectively. Our new hybrid model gives a higher accuracy than the support vector regression (SVR) model, LSTM neural network-attention (LSTM-attention) model, and temporal convolutional network (TCN) model. It shows that the proposed model in this work is favorable to the short_term traffic flow prediction.

Copyright: © Zhihong Li et al. et al.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10710942
  • Veröffentlicht am:
    21.03.2023
  • Geändert am:
    10.05.2023
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine