An Effective Fault Detection Method for HVAC Systems Using the LSTM-SVDD Algorithm
Autor(en): |
Hui Zhu
Wen Yang Shihong Li Aiping Pang |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 18 Januar 2022, n. 2, v. 12 |
Seite(n): | 246 |
DOI: | 10.3390/buildings12020246 |
Abstrakt: |
Fault detection in heating, ventilation and air-conditioning (HVAC) systems can effectively prevent equipment damage and system energy loss, and enhance the stability and reliability of system operation. However, existing fault detection strategies have not realized high effectiveness, mainly due to the time-delay characteristics of HVAC system faults and the lack of system-fault operation data. Therefore, aiming at the time delay of system faults and the lack of actual system-fault operation data, this paper proposes a fault detection method that combines a system simulation model and an intelligent detection algorithm. The method first uses the Modelica modeling language to build a scalable simulation model of the system to obtain fault data that are not easily accessible in practice. The long short_term memory-support vector data description (LSTM-SVDD) algorithm is then applied to detect faults in real time by dynamically adjusting the fault residuals according to the absolute difference between the predicted and actual values. The experimental results show that the LSTM-SVDD method improves the average detection accuracy by 9.675% and 9.85% over the classical LSTM network and the extreme gradient boosting (XGBoost) method, respectively, under different fault levels. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
8.97 MB
- Über diese
Datenseite - Reference-ID
10661195 - Veröffentlicht am:
28.03.2022 - Geändert am:
01.06.2022