0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Effect of Different Types of Fiber Utilization On Mechanical Properties of Recycled Aggregate Concrete Containing Silica Fume

Autor(en):

Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Journal of Green Building, , n. 1, v. 15
Seite(n): 119-136
DOI: 10.3992/1943-4618.15.1.119
Abstrakt:

The use of recycled aggregate (RA) instead of natural aggregate (NA) in concrete is necessary for environmental protection and the effective utilization of resources. The addition of recycled aggregates in concrete increases shrinkage, porosity and decreases the mechanical properties compared to that of normal concrete. This study was aimed at investigating how the addition of various proportions of polypropylene and steel fiber affect the mechanical properties of recycled aggregate concrete (RAC). The natural coarse aggregates (NCAs) used in the production of normal concrete (NC) were replaced in 30% and 50% proportions by recycled coarse aggregates (RCAs) obtained from the demolished buildings. In this case, a polypropylene fiber (PF) content of 0.1% and steel fiber (SF) 1% and 2% volume fractions were used, along with hybrid fibers-a combination of the two. While the material performance of RAC compared to NC is analyzed by reviewing existing published literature, it is not evident what the use of RCAs and hybrid fibers have on the mechanical properties of concrete. The results showed that the compressive strength, flexural strength and impcat resistance of RAC were reduced as the percentage of RCAs increased. It was observed that the compressive strength was increased with the addition of 1% steel fiber in the RAC. The flexural and impact performance of steel fiber-reinforced concrete (Specimens NC and RAC) was increased as the volume fractions of steel fiber increased. The hybrid fiber reinforced concretes showed the best results in their mechanical performance of all the concrete groups.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.3992/1943-4618.15.1.119.
  • Über diese
    Datenseite
  • Reference-ID
    10516555
  • Veröffentlicht am:
    11.12.2020
  • Geändert am:
    19.02.2021
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine