0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Effect Factors’ Selection and Prediction of Compressive Strength of SCC Using a Hybrid Network Based on GA

Autor(en):



Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Stavební obzor - Civil Engineering Journal, , n. 2, v. 30
DOI: 10.14311/cej.2021.02.0031
Abstrakt:

Compressive strength is the most important evaluation index for concrete. In order to predict the compressive strength of self-compacting concrete, two kinds of artificial neural networks (ANNs), including the BP (Back-propagation) networks and the hybrid networks DRGA-BP based on GA (Genetic algorithm), were designed and applied in this study. With DRGA-BP, the most representative variables were selected out from many initial inputs to reduce data dimensions and also the weights and thresholds of BP model were optimized. The results showed that the hybrid model presented better prediction accuracy with the R2 (coefficient of determination) of 0.9602, and appeared to well agree with the experimental data and was quite reliable. Finally, a mix ratio design method based on DRGA-BP model was proposed for reducing material waste and saving time in the process of concrete production with continuous adjustment.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.14311/cej.2021.02.0031.
  • Über diese
    Datenseite
  • Reference-ID
    10627622
  • Veröffentlicht am:
    03.09.2021
  • Geändert am:
    03.09.2021
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine