Economic Model-Predictive Control of Building Heating Systems Using Backbone Energy System Modelling Framework
Autor(en): |
Topi Rasku
Toni Lastusilta Ala Hasan Rakesh Ramesh Juha Kiviluoma |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Buildings, 22 November 2023, n. 12, v. 13 |
Seite(n): | 3089 |
DOI: | 10.3390/buildings13123089 |
Abstrakt: |
Accessing the demand-side management potential of the residential heating sector requires sophisticated control capable of predicting buildings’ response to changes in heating and cooling power, e.g., model-predictive control. However, while studies exploring its impacts both for individual buildings as well as energy markets exist, building-level control in large-scale energy system models has not been properly examined. In this work, we demonstrate the feasibility of the open-source energy system modelling framework Backbone for simplified model-predictive control of buildings, helping address the above-mentioned research gap. Hourly rolling horizon optimisations were performed to minimise the costs of flexible heating and cooling electricity consumption for a modern Finnish detached house and an apartment block with ground-to-water heat pump systems for the years 2015–2022. Compared to a baseline using a constant electricity price signal, optimisation with hourly spot electricity market prices resulted in 3.1–17.5% yearly cost savings depending on the simulated year, agreeing with comparable literature. Furthermore, the length of the optimisation horizon was not found to have a significant impact on the results beyond 36 h. Overall, the simplified model-predictive control was observed to behave rationally, lending credence to the integration of simplified building models within large-scale energy system modelling frameworks. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
2.77 MB
- Über diese
Datenseite - Reference-ID
10753730 - Veröffentlicht am:
14.01.2024 - Geändert am:
07.02.2024