Dynamic Reliability Prediction of Bridges Based on Decoupled SHM Extreme Stress Data and Improved BDLM
Autor(en): |
Xueping Fan
Yuefei Liu |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Advances in Civil Engineering, Januar 2021, v. 2021 |
Seite(n): | 1-9 |
DOI: | 10.1155/2021/5579368 |
Abstrakt: |
Bridge health monitoring system has produced a huge amount of monitored data (extreme stress data, etc.) in the long-term service periods; how to reasonably predict structural dynamic reliability with these data is one key problem in structural health monitoring (SHM) field. In this paper, considering the coupling, randomness, and time variation of SHM data, firstly, the coupled extreme stress data, which are considered as a time series, are decoupled into high-frequency and low-frequency data with the moving average method. Secondly, Bayesian dynamic linear models (BDLM) without priori monitoring error data (e.g., unknown monitored error variance) are built to dynamically predict the decoupled extreme stress; furthermore, the dynamic reliability of bridge members is predicted with the built BDLM and first_order second moment (FOSM) reliability method. Finally, an actual example is provided to illustrate the feasibility and application of the proposed models and methods. The research results of this paper will provide the theoretical foundations for structural reliability prediction. |
Copyright: | © Xueping Fan and Yuefei Liu et al. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
1 MB
- Über diese
Datenseite - Reference-ID
10609909 - Veröffentlicht am:
08.06.2021 - Geändert am:
10.06.2021