Dual Model for International Roughness Index Classification and Prediction
Autor(en): |
Noelia Molinero-Pérez
Laura Montalbán-Domingo Amalia Sanz-Benlloch Tatiana García-Segura |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Infrastructures, 25 Dezember 2024, n. 1, v. 10 |
Seite(n): | 23 |
DOI: | 10.3390/infrastructures10010023 |
Abstrakt: |
Existing models for predicting the international roughness index (IRI) of a road surface often lack adaptability, struggling to accurately reflect variations in climate, traffic, and pavement distresses—factors critical for effective and sustainable maintenance. This study presents a novel dual-model approach that integrates pavement condition index (PCI), pavement distress types, climatic, and traffic data to improve IRI prediction. Using data from the Long-Term Pavement Performance database, a dual-model approach was developed: pavements were classified into groups based on key factors, and tailored regression models were subsequently applied within each group. The model exhibits good predictive accuracy, with R2 values of 0.62, 0.72, and 0.82 for the individual groups. Furthermore, the validation results (R2 = 0.89) confirm that the combination of logistic regression and linear regression enhances the precision of IRI value predictions. This approach enhances adaptability and practicality, offering a versatile tool for estimating IRI under diverse conditions. The proposed methodology has the potential to support more effective, data-driven decisions in pavement maintenance, fostering sustainability and cost efficiency. |
Copyright: | © 2024 the Authors. Licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
1.92 MB
- Über diese
Datenseite - Reference-ID
10816942 - Veröffentlicht am:
03.02.2025 - Geändert am:
03.02.2025