Digital Visual Sensing Design Teaching Using Digital Twins
Autor(en): |
Lu Lian
Yao Yan |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Advances in Civil Engineering, Januar 2022, v. 2022 |
Seite(n): | 1-11 |
DOI: | 10.1155/2022/9311246 |
Abstrakt: |
Digital twin technology can support teachers in this major to complete monitoring related topics and application research and serve teaching and scientific research through the establishment of automatic monitoring teaching model laboratory and in-depth combination with the current students’ skill training needs in this major. This exploration aims to make the visual sensor industry have a steady stream of talents. Promoting the development of visual sensor technology is to promote the development of science and technology. Based on the teaching research of visual sensing design using digital technology, a set of teaching systems of visual sensing design is designed by using the methods of literature research and investigation and analysis. Special topics are set up from the aspects of professional subjects; regarding course content, various sensor principle research courses, visual sensor design courses, experimental courses, and example courses are set up; teaching methods are divided into online and offline synchronous classes; the evaluation method should focus on the distribution, examples, and practice. The results show that traditional classroom teaching is seriously separated from extracurricular learning. Most students are in a state of passive acceptance of knowledge and have few thinking activities. The established teaching system integrates brain and cognition, photoelectric foundation, sensory imaging, visual sensing imaging, visual sensing technology courses, computer technology, virtual experiment courses, and physical experiment courses. It can carry out more than 30 experiments of optical microscopic imaging and X-ray imaging based on the principle of visual sensing. Therefore, the teaching effect and teaching mode of the proposed digital visual sensing teaching system have been greatly improved. |
Copyright: | © 2022 Lu Lian and Yao Yan et al. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
1.89 MB
- Über diese
Datenseite - Reference-ID
10657348 - Veröffentlicht am:
17.02.2022 - Geändert am:
01.06.2022