0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Development of Seismic Fragility Functions for Reinforced Concrete Buildings Using Damage-Sensitive Features Based on Wavelet Theory

Autor(en): ORCID
ORCID
ORCID
ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Structural Control and Health Monitoring, , v. 2024
Seite(n): 1-22
DOI: 10.1155/2024/8754191
Abstrakt:

In this study, wavelet-based damage-sensitive features are employed to derive the seismic fragility functions/curves for reinforced concrete moment-resisting frames. Two different wavelet transform functions, namely, Bior3.3 and Morlet mother wavelet families, were applied to absolute acceleration time histories of building frames to extract the wavelet-based and refined wavelet-based damage-sensitive features (i.e., DSF and rDSF). The accuracy of seismic assessments and certainty in predicting structural behavior strongly depend on the specific optimal intensity measures selected, reliability of wavelet-based damage-sensitive features, and some such intensity measures as PGA, PGV, PGD, Sa, and Sdi as the conventionally utilized measures to detect the damage state of a structure. These measures were examined against their statistical properties of efficiency, practicality, proficiency, coefficient of determination, and sufficiency to select the appropriate optimal intensity measures, which were then used to drive the fragility curves disclosing the failure or other damage states of interest. For the purposes of this study, three different concrete moment-resisting frames with four-, eight-, and twelve-story building frames were adopted for implementing the proposed approach. The findings demonstrate that the wavelet-based damage-sensitive features (DSFs/rDSF) simultaneously satisfy all the statistical properties cited above. This is evidenced by the low variance and dispersions observed in the frame damage state predictions by the fragility functions derived from the wavelet-based DSF when compared with those derived from the classical fragility analyses such as spectral acceleration at the first mode period of the structure. A final aspect of the study concerns the superior performance and efficiency of the fragility curves derived by the Bior3.3 wavelet-based DSF over those derived from Morlet wavelet-based DSF.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.1155/2024/8754191.
  • Über diese
    Datenseite
  • Reference-ID
    10784499
  • Veröffentlicht am:
    20.06.2024
  • Geändert am:
    20.06.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine