0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Development and Application of Small Object Visual Recognition Algorithm in Assisting Safety Management of Tower Cranes

Autor(en):




Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Buildings, , n. 12, v. 14
Seite(n): 3728
DOI: 10.3390/buildings14123728
Abstrakt:

This study presents a novel video-based risk assessment and safety management technique aimed at mitigating the risk of falling objects during tower crane lifting operations. The conventional YOLOv5 algorithm is prone to issues of missed and false detections, particularly when identifying small objects. To address these limitations, the algorithm is enhanced by incorporating an additional small object detection layer, implementing an attention mechanism, and modifying the loss function. The enhanced YOLOv5s model achieved precision and recall rates of 96.00%, with average precision (AP) values of 96.42% at an IoU of 0.5 and 62.02% across the range of IoU values from 0.5 to 0.95. These improvements significantly enhance the model’s capability to accurately detect crane hooks and personnel. Upon identifying the hook within a video frame, its actual height is calculated using an interpolation function derived from the hook’s dimensions. This calculation allows for the precise demarcation of the danger zone by determining the potential impact area of falling objects. The worker’s risk level is assessed using a refined method based on the statistical analysis of past accidents. If the risk level surpasses a predetermined safety threshold, the worker’s detection box is emphasized and flagged as a caution on the monitoring display.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10810682
  • Veröffentlicht am:
    17.01.2025
  • Geändert am:
    17.01.2025
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine